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Abstract: In pattern recognition, graph-based feature combination techniques attract many researchers to study
this field. In this paper, we construct a unified framework based on graphs (GF), and derive that FDA, PCA, LPP,
DLPP, MFA and MMC are special cases of GF, and then three new algorithms are proposed for GF, which are
regularized GF (RGF), GF based on null space (NGF) and GF based on singular value decomposition (GF/SVD).
Experiments are made on AVIRIS remote sensing image to illustrate the efficient and effective of our algorithms.
The results show that the effects of proposed algorithms are very significantly.
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1 Introduction

Feature combination is one of the most important
parts of pattern recognition and machine learning,
which makes computation cost decrease and classifi-
cation performance increase. In recent years, a great
amount of efforts have been spent in the research
of local or global linear feature combination tech-
niques, such as Fisher discriminant analysis (FDA)
[1-9], principal component analysis (PCA) [10], local-
ity preserving projection (LPP) [11-12], discriminant
locality preserving projection (DLPP) [13], marginal
Fisher analysis (MFA) [14-15], maximum margin cri-
terion (MMC) [13,16-17] and so on. PCA and FDA
are global linear subspace learning methods and LPP,
DLPP, MFA and MMC are local methods. FDA
aims to seek optimal linear directions such that the
Fisher criterion of the between-class scatter versus
the within-class scatter is maximized. PCA seeks an
optimal transformation to map data points to a low-
dimension subspace and in which preserve the con-
struction of data’s total covariance as possible. LPP
aims to preserve the local similarity of data, that
is, when adjacent data points are projected to the
low-dimensional subspace, the corresponding adja-
cent property is preserved. DLPP aims at preserving
the neighbor relationship of samples which share the
same class label. The idea of MFA is to make the dis-
tances of data points with neighbor relationship in the
same class are close to each other, while data points
of the different class with neighbor relationship are far
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from each other. MMC aims at getting a feature sub-
space and the margin between classes is maximized
by mapping the original data to that low-dimension
feature space.

In this paper, although some of the above methods
are not proposed based on graphs, we attempt to make
an explanation with graph theory about these meth-
ods. We propose a unified framework based on graphs
(GF) and show that FDA, PCA, LPP, DLPP, MFA and
MMC are special cases of GF by means of different
selection of weighting matrixes in GF. In addition, in
order to solve the singularity problem of weighting
matrixes, we propose three algorithms for GF, regular-
ized GF (RGF), GF based on null space (NGF) and GF
based on singular value decomposition (GF/SVD), re-
spectively. We make experiments on AVIRIS remote
sensing image to illustrate the efficient and effective
of our new methods.

The rest of this paper is organized as follows. GF
is proposed in Section 2. FDA, PCA, LPP, DLPP,
MFA and MMC are expressed as special cases of GF
in Section 3. In Section 4, three new algorithms for
solving GF are proposed. Experiments on AVIRIS re-
mote sensing image with new algorithms are made in
Section 5, the results demonstrate the effectiveness of
proposed algorithms. Section 6 concludes the paper.

2 Framework Based on Graphs (GF)

In this section, we introduce a framework based on
graphs for feature combination of high dimensional
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data. Given a data set {x1, · · · , xn} ⊆ Rm with c
classes and let X = [x1, · · · , xn] ∈ Rm×n. The aim
of feature combination is to reduce the dimension of
data, that is to find a matrix A ∈ Rm×d(d≪ m) such
that y = ATx ∈ Rd.

In order to construct a framework based on
graphs, we first introduce the constructions of graphs.
Generally, a graph is made by using adjacency re-
lationship. We construct graphs by weighting each
pairs of data points. By means of different defini-
tion methods of weights, we can get two different
weight matrixes B and C that are symmetric n × n
matrixes. Let Gb = {X,B} denote an intrinsic graph
with vertex set {x1, · · · , xn} and affinity matrixB and
Gc = {X,C} a constraint graph with the same vertex
set as that of Gb and constraint matrix C. The graphs
Gb and Gc are defined to characterize certain statisti-
cal or geometric properties of the vertices x1, · · · , xn.
The purpose of graph embedding is reduce the high
dimensional vertices into low dimensional space that
preserve the similarities which are measured by the
edge weights of the matrix B and suppress the simi-
larities which are measured by the edge weights of the
matrix C. The general framework of graph embed-
ding is to find the optimal w = (w1, · · · , wn)T ∈ Rn

by maximizing the following objective function (for
details, see [18]):

max
w

wTBw
wTCw

. (1)

Let a ∈ Rm be a projection direction and wi =
aTxi, i = 1, · · · , n, then w = XTa and the problem
(1) becomes

max
a

aTXBXT a
aTXCXT a

. (2)

We can get the optimal projection direction a as
the eigenvector corresponding to the maximum eigen-
value of the following generalized eigen-problem
when XCXT is nonsingular:

XBXTa = λXCXTa.

3 Applications of GF for feature
combination

In this section, we show that FDA, PCA, LPP, DLPP,
MFA and MMC can be unified into GF by means of
the different choices of affinity matrix B and con-
straint matrix C. Let A = [a1, · · · , ad] ∈ Rm×d,
yi = ATxi, i = 1, · · · , n and Y = ATX ∈
Rd×n. Let lk be the number of samples in the class
k and x

(k)
i be the ith sample in the class k. Let

X(k) = [x
(k)
1 , · · · , x(k)lk ], X = [X(1), · · · , X(c)] and

n =
∑c
k=1 lk. Let µ(k) = 1

lk

∑lk
i=1 x

(k)
i and µ =

1
n

∑n
i=1 xi be the means of the data in class k and all

data, respectively.

3.1 FDA Underlying GF (GFDA)

Let Sw, Sb and St denote the within-class, between-
class and total scatter matrixes, respectively. They are
defined by

Sw =
c∑

k=1

lk∑
i=1

(x
(k)
i − µ(k))(x

(k)
i − µ(k))T ,

Sb =
c∑

k=1
lk(µ

(k) − µ)(µ(k) − µ)T ,

St =
n∑
i=1

(xi − µ)(xi − µ)T .

The idea of FDA is to seek d directions by the fol-
lowing Fisher criterion on which the data points of dif-
ferent class are far from each other while data points
of the same class are close to each other:

max
a

aTSba
aTSwa

. (3)

We can show that the problem (3) is equivalent to

max
a

aTSba
aTSta

. (4)

LetW (k) be an lk×lk matrix with all the elements
equal to 1/lk and define an n× n matrix W by

W =


W (1) 0 · · · 0

0 W (2) 0 0
...

...
. . .

...
0 0 0 W (c)

 .

If we let B =W − (1/n)eeT and C = I− (1/n)eeT ,
where e = [1, · · · , 1]T ∈ Rn and I ∈ Rn×n is an
identity matrix, then

XBXT

= X(W − (1/n)eeT )XT

=
∑c
k=1X

(k)W (k)(X(k))T

− 1
n

∑n
i=1 xi

∑n
i=1 x

T
i

=
∑c
k=1 lkµ

(k)(µ(k))T − nµµT

=
∑c
k=1(µ

(k) − µ)(µ(k) − µ)T

= Sb,
XCXT

= X(I − (1/n)eeT )XT

=
∑c
k=1X

(k)(X(k))T − 1
n

∑n
i=1 xi

∑n
i=1 x

T
i

=
∑c
k=1 lk

∑lk
i=1 x

(k)
i (x

(k)
i )T − nµµT

=
∑c
k=1

∑lk
i=1(x

(k)
i − µ)(x

(k)
i − µ)T

= St.
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Consequently, the problem (4) can be presented as

max
a

aTXBXT a
aTXCXT a

,

which indicates that FDA is a special case of GF.

3.2 LPP Underlying GF (GLPP)

LPP aims to preserve the local similarity of data,
that is, when adjacent data points are projected to
a low-dimensional subspace, the corresponding adja-
cent property is preserved [11-12]. The criterion of
LPP for seeking an optimal transformation is to mini-
mizing the following objective function

min
i,j

∑
i,j

∥yi − yj∥2pij , (5)

where P = [pij ]n×n is a similarity matrix defined as
follows

pij =


e−

∥xi−xj∥
2

2σ2 , xi ∈ Nk(xj) or
xj ∈ Nk(xi),

0, otherwise,

(6)

where Nk(xi) denotes the set of k nearest neighbor of
xi and σ > 0 is a given parameter. Due to∑

i,j
∥yi − yj∥2pij

=
∑
i,j
(yi − yj)

T (yi − yj)pij

= 2
∑
i,j
yTi yipij − 2

∑
i,j
yTi yjpij

= 2trace(Y (D − P )Y T )
= 2trace(ATXLXTA),

where D = diag{D11, · · · , Dnn} is a diagonal ma-
trix, Dii =

∑
j pij and L = D − P is the Laplacian

matrix, the problem (5) is equivalent to

min
A

trace(ATXLXTA). (7)

Obviously, A = 0 is the optimal solution of the prob-
lem (7). But we will lose all of the discriminant infor-
mation with that optimal transformation. So, we can
impose a constraint trace(ATXDXTA) = 1 and the
problem (7) can be rewritten as

min
A

trace(ATXLXTA)

s.t. trace(ATXDXTA) = 1.
(8)

The problem (8) is equivalent to

max
A

trace(ATXPXTA)
trace(ATXDXTA)

. (9)

Let a is a projection vector, then the problem (9) is the
following optimization problem:

max
a

aTXPXT a
aTXDXT a

,

which indicates that LPP is a special case of GF.

3.3 DLPP Underlying GF (GDLPP)

DLPP is an improvement of LPP. In LPP, neighbor
relationships of data points are just preserved while
information of classes is not considered, which may
enhance the adjacent relationship of points with dif-
ferent classes. To overcome the limitation, Ma et al.
proposed DLPP in [13]. The criterion of DLPP is as
follows:

min
A

∑
i,j ∥yi − yj∥2(pij − qij), (10)

where pij is defined in (6) and

qij =

{
1, xi ∈ N−

k2
(xj) or xj ∈ N−

k2
(xi),

0, otherwise,
(11)

where N−
k2
(xi) denotes the set of k2 nearest neighbor

of xi and share the different class label with xi. Since

∑
i,j

∥yi − yj∥2(pij − qij)

= 2trace(ATX(D − P )XTA)
−2trace(ATX(D′ −Q)XTA)

= 2trace(ATX(D̃ − L̃)XTA),

where P = [pij ]n×n, Q = [qij ]n×n, D̃ = D − D′,
L̃ = P − Q, D = diag{

∑
j p1j , · · · ,

∑
j pnj} and

D′ = diag{
∑
j q1j , · · · ,

∑
j qnj}, the problem (10) is

equivalent to

min
A

trace(ATX(D̃ − L̃)XTA). (12)

By imposing a constraint trace(ATXD̃XTA) = 1,
the problem (12) can be rewritten as

min
A

trace(ATX(D̃ − L̃)XTA)

s.t. trace(ATXD̃XTA) = 1,

which is equivalent to

max
A

trace(ATXL̃XTA)

trace(ATXD̃XTA)
, (13)

Let a is a projection vector, then the problem (13) is
the following optimization problem:

max
a

aTXL̃XT a

aTXD̃XT a
,

which shows that DLPP is a special case of GF.
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3.4 PCA Underlying GF (GPCA)

PCA is one of the most popular algorithms for feature
combination first proposed in [10]. It seeks an optimal
transformation to map data points to a low-dimension
subspace and preserves the construction of data’s to-
tal convince as possible. The criterion of PCA is as
follows:

max
A

n∑
i=1

∥yi − y∥2

s.t. ATA = I,
(14)

where I ∈ Rd×d is an identical matrix and
y = 1

n

∑n
i=1 yi is the mean of all samples in low-

dimension space. Since

n∑
i=1

∥yi − y∥2

=
n∑
i=1

(yi − y)T (yi − y)

=
n∑
i=1

(xi − µ)TAAT (xi − µ)

= trace(ATStA)

and we have shown that St = XCXT in Section 3.2,
the problem (14) is equivalent to

max
A

trace(ATXCXTA)

s.t. ATA = I.
(15)

For the sake of convenience, we substitute the con-
straint ATA = I by trace(ATXXTA) = 1, and then
the problem (15) can be rewritten as

max
A

trace(ATXCXTA)

s.t. trace(ATXXTA) = 1,

which is equivalent to

max
A

trace(ATXCXTA)
trace(ATXXTA)

. (16)

Let a is a projection vector, then the problem (16)
is the following optimization problem:

max
a

aTXCXT a
aTXXT a

,

which shows that PCA is a special case of GF.

3.5 MFA Underlying GF (GMFA)

MFA utilizes the graph embedding to construct an in-
trinsic graph and a penalty graph. The former is used
to characterize the intraclass compactness, and the lat-
ter is designed to characterize the interclass separa-
bility (for details, see [14-15). The intraclass com-
pactness and interclass separability are defined by the

terms Sc and Sp, respectively,

Sc =
∑
i,j

∥ATxi −ATxj∥2W c
ij ,

Sp =
∑
i,j

∥ATxi −ATxj∥2W p
ij ,

where

W c
ij =

{
1, i ∈ N+

k1
(j) or j ∈ N+

k1
(i),

0, otherwise,

W p
ij =

{
1, i ∈ N−

k2
(j) or j ∈ N−

k2
(i),

0, otherwise,

N+
k1
(i) is the index set of the k1 nearest neighbors of

the data point xi in the same class and N−
k2
(i) is the

index set of the k2 nearest neighbors of the data point
xi in which the class labels are different from the class
label of xi. Let Dc = diag{

∑
jW

c
1j , · · · ,

∑
jW

c
nj}

and Dp = diag{
∑
jW

p
1j , · · · ,

∑
jW

p
nj}, then

Sc =
∑
i,j

∥ATxi −ATxj∥2W c
ij

= 2trace(ATX(Dc −W c)XTA)

and

Sp =
∑
i,j

∥ATxi −ATxj∥2W p
ij

= 2trace(ATX(Dp −W p)XTA).

Consequently, the criterion of MFA is as follows:

max
A

trace(ATX(Dp−W p)XTA)
trace(ATX(Dc−W c)XTA)

. (17)

Let a is a projection vector, then the problem (17)
is the following optimization problem:

max
a

aTX(Dp−W p)XT a
aTX(Dc−W c)XT a

,

which shows that MFA is a special case of GF.

3.6 MMC Underlying GF (GMMC)

MMC aims to get a low-dimension feature subspace,
in which the margin between classes is maximized
(for details, see [13,16]). the margin between classes
is defined by

d(i, j) = d(µ(i), µ(j))− trace(Si)− trace(Sj),

where d(µ(i), µ(j)) = ∥µ(i) − µ(j)∥2, µ(i) and Si de-
note the mean vector and covariance matrix of the
class i in the low-dimension space, respectively. The
criterion of MMC is as follows:

max J = 1
2

c∑
i=1

c∑
j=1

pipjd(i, j), (18)
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where pi and pj are the prior probabilities of class i
and class j, respectively. It can be derived that J =
traceAT (Sb−Sw)A (see [17]), and then the criterion
(18) can be rewritten as

max
A

trace(AT (Sb − Sw)A). (19)

By imposing a constraint trace(ATXXTA) = 1, the
problem (19) can be rewritten as

max
A

trace(AT (Sb − Sw)A)

s.t. trace(ATXXTA) = 1,

which is equivalent to

max
A

trace(AT (2Sb−St)A)
trace(ATXXTA) (20)

since St = Sb + Sw.
Let a is a projection vector. By substituting Sb =

XBXT and St = XCXT derived in section 3.1 into
(20), the problem (20) can be changed into the follow-
ing optimization problem:

max
a

aTX(2B−C)XT a
aTXXT a

,

which shows that MMC is a special case of GF.

4 New Algorithms for GF

We propose a framework based on graphs (2) in Sec-
tion 2. Let S1 = XBXT and S2 = XCXT , then the
GF (2) can be written as

max
a

aTS1a
aTS2a

. (21)

We often meet the question that S2 is singular dur-
ing the way to solve the problem (21). In order to
avoid computing the singularity of S2, by means of
the study of FDA improved algorithms (for details, see
[2-6]), we propose three efficient and effective algo-
rithms in this section to solve the problem (21), which
are called regularized GF (RGF), GF based on null
space (NGF) and GF based on singular value decom-
position (GF/SVD), respectively.

4.1 RGF

Let I denote the identical matrix and α > 0. We know
that S2 + αI is a nonsingular matrix because that S2
is a symmetric positive semidefinite matrix. Conse-
quently, we can substitute aTS2a by aT (S2+αI)a in
problem (21) and then get the following optimization
problem:

max
a

aTS1a
aT (S2+αI)a

. (22)

We can show that the problem (22) can be transformed
into the following generalized eigen-equation:

S1a = λ(S2 + αI)a. (23)

By solving the equation (23), we can get the optimal
projection a as the eigenvector corresponding to the
maximum eigenvalue. The specific algorithm is as fol-
lows.

Algorithm 1. RGF
1. Construct the affinity matrix B and constraint

matrix C.
2. Compute S1 = XBXT , and S2 = XCXT .
3. Solve the generalized eigen-equation (23) with

a given α > 0 and get the eigenvectors a1, · · · , ad
corresponding to eigenvalues λ1 ≥ · · · ≥ λd, respec-
tively.

4. Let A = [a1, · · · , ad].

4.2 NGF

In this subsection, in order to avoid the singularity of
S2 in problem (21), we first consider the null space
null(S2) of S2 and then consider the range space of
S1 on the null(S2).

Let rank(S2) = r2. By the singular value decom-
position (SVD) of S2:

S2 = [ U21 U22 ]

[
Σ21 0
0 0

] [
UT21
UT22

]
, (24)

where U21 ∈ Rm×r2 and U22 ∈ Rm×(m−r2) are
column orthogonal matrices and Σ21 ∈ Rr2×r2

is a diagonal matrix with non-increasing positive
diagonal components, we can get that S̃2 =
U22U

T
22S2U22U

T
22 = 0. It is easy to show that

null(S2) =span(U22). Let

S̃1 = U22U
T
22S1U22U

T
22.

Next, we consider the range space range(S̃1) of
S̃1. Let rank(S1) = r1, then rank(S̃1) = r1. By the
SVD of the matrix S̃1:

S̃1 = [ Ũ11 Ũ12 ]

[
Σ̃11 0
0 0

] Ũ11
T

Ũ12
T

 , (25)

where Ũ11 ∈ Rm×r1 and Ũ12 ∈ Rm×(m−r1) are col-
umn orthogonal matrices and Σ̃11 ∈ Rr1×r1 is a di-
agonal matrix with non-increasing positive diagonal
components, we can get that

˜̃
S1 = Ũ11

T
U22U

T
22S1U22U

T
22Ũ11 = Σ̃11.
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It is easy to show that range(S̃1) =span(Ũ11) and

˜̃
S2 = Ũ11

T
U22U

T
22S2U22U

T
22Ũ11 = 0.

Consequently, we can get an optimal solution
U22U

T
22Ũ11 of the problem (21), which can be as-

signed as an optimal dimensionality reduction matrix
A. The specific algorithm is as follows.

Algorithm 2. NGF
1. Construct the affinity matrix B and constraint

matrix C.
2. Compute S1 = XBXT and S2 = XCXT .
3. Compute the SVD (24) of S2 and let S̃1 =

U22U
T
22S1U22U

T
22.

4. Compute the SVD (25) of S̃1 and get Ũ11.
5. Let A = U22U

T
22Ũ11.

4.3 GF/SVD

Let rank(S1) = r1 and consider the SVD of the matrix
S1:

S1 = [ U11 U12 ]

[
Σ11 0
0 0

] [
UT11
UT12

]
, (26)

where U11 ∈ Rm×r1 and U12 ∈ Rm×(m−r1) are col-
umn orthogonal matrices and Σ11 ∈ Rr1×r1 is a di-
agonal matrix with non-increasing positive diagonal
components. It is obvious that S̃1 = UT11S1U11 = Σ11

is a nonsingular matrix.
Let S̃2 = UT11S2U11. In the most applications, we

have rank(S2) ≥rank(S1) and then S̃2 is also a non-
singular matrix (for details, see [19]). Consequently,
we can get an optimal dimensionality reduction ma-
trix A. The specific algorithm is as follows.

Algorithm 3. GF/SVD
1. Construct the affinity matrix B and constraint

matrix C.
2. Let S1 = XBXT and S2 = XCXT .
3. Compute the SVD (26) of S1 and get U11.
4. Let S̃1 = UT11S1U11 and S̃2 = UT11S2U11.
5. Compute the eigenvectors g1, · · · , gd of the

matrix (S̃2)
−1S̃1 corresponding to the first d largest

eigenvalues.
6. Let A = U11[g1, · · · , gd].

5 Experiments and Analysis

In this section, in order to evaluate the performance
of algorithms RGF, NGF and GF/SVD, we make
a series of experiments on KSC data recorded in
March 23, 1996 with six kinds of feature combination

methods, regularized GFDA (RGFDA), GFDA based
on null space (NGFDA), GFDA based on SVD
(GFDA/SVD), regularized GLPP (RGLPP), GLPP
based on null space (NGLPP) and GLPP based on
SVD (GLPP/SVD). The KSC data belongs to NASA’s
AVIRIS remote sensing image and can be downloaded
from http://www.csr.utexas.edu/hyperspectral/data/
KSC. We choose three different sets of data:

T1 : KSC TRAIN expt8 Rate5.mat,
T2 : KSC TRAIN expt9 Rate5.mat,
T3 : KSC TRAIN expt10 Rate5.mat.
In each set of data, we take respectively the first

20 data as samples in classes 1-3. Each sample has
176 features. All experiments are performed on a Pen-
tium 2.52GH with 2G RAM and programmed in the
MATLAB 7.11.0.

The first group of experiments are made on T3
and the results can be found in Figures 1-6. From
Figures 1-3, we can see that RGFDA and NGFDA
are more effective than GFDA/SVD for the classifi-
cation results of low dimension samples, and RGFDA
is more effective than NGFDA for the classification
results of low dimension samples. RGFDA, NGFDA
and GFDA/SVD can separate completely class 1, but
GFDA/SVD can not separate class 2 and class 3.
From Figures 4-6, we can see that GLPP/SVD is more
effective than RGLPP and NGLPP, and NGLPP is
more effective than RGLPP for the classification re-
sults of low dimension samples. RGLPP, NGLPP
and GLPP/SVD can separate completely class 1, but
RGLPP can not separate class 2 and class 3.

0 5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

RGFDA

 

 
class1
class2
class3

Figure 1: RGFDA

The second group of experiments are made on T1
and the results can be found in Figures 7-12. From
Figures 7-9, we can see that RGFDA and NGFDA
are more effective than GFDA/SVD for the classifica-
tion results of low dimension samples, and RGFDA
is more effective than NGFDA. RGFDA, NGFDA
and GFDA/SVD can separate class 1 completely,
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Figure 2: NGFDA
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Figure 3: GFDA/SVD
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Figure 4: RGLPP

but GFDA/SVD can not separate class 2 and class
3. From Figures 10-12, we can see that NGLPP
and GLPP/SVD are more effective than RGLPP,
and GLPP/SVD is more effective than NGLPP for
the classification results of low dimension samples.
RGLPP, NGLPP and GLPP/SVD can separate com-
pletely class 1, but RGLPP can not separate class 2
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Figure 5: NGLPP
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Figure 6: GLPP/SVD

and class 3.
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Figure 7: RGFDA

The third group of experiments are made on T2
and the results can be found in Figures 13-18. From
Figures 13-15, we can see that RGFDA and NGFDA
are more effective than GFDA/SVD for the classifica-
tion results of low dimension samples, and RGFDA
is more effective than NGFDA. RGFDA, NGFDA
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Figure 8: NGFDA
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Figure 9: GFDA/SVD
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Figure 10: RGLPP

and GFDA/SVD can separate completely class 1, but
GFDA/SVD can not separate class 2 and class 3.
From Figures 16-18, we can see that GLPP/SVD is
more effective than RGLPP and NGLPP, and NGLPP
is more effective than RGLPP for the classification
results of low dimension samples. RGLPP, NGLPP
and GLPP/SVD can separate completely class 1, but
RGLPP can not separate class 2 and class 3.

In short, we can see from three groups of exper-
iments that RGFDA is more effective than NGFDA
and GFDA/SVD for GFDA, and GLPP/SVD is more
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Figure 11: NGLPP
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Figure 12: GLPP/SVD
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Figure 13: RGFDA

effective than RGLPP and NGLPP for GLPP.

6 Conclusion

In this paper, we firstly present a unified framework
based on graphs and show that the framework con-
tains the global methods FDA, PCA and local meth-
ods LPP, DLPP, MFA, MMC as special cases. Sec-
ondly, in order to avoid the singularity problem of
matrix S2, we propose three new effective algorithms
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Figure 14: NGFDA
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Figure 15: GFDA/SVD
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Figure 16: RGLPP

RGF, NGF, GF/SVD for GF. In addition, In order to
illustrate the efficient and effective of the proposed al-
gorithms, we make 18 experiments on three different
sets of data taken from AVIRIS database with global
method GFDA and local method GLPP. Experiment
results show that the proposed algorithms are work-
able, and RGFDA is more effective than NGFDA and
GFDA/SVD for GFDA and GLPP/SVD is more effec-
tive than RGLPP and NGLPP for GLPP.

In this paper, we consider the framework based
on graphs (GF) for supervised problems. However,
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Figure 17: NGLPP
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Figure 18: GLPP/SVD

we often encounter semi-supervised problems in real
world. So, we can extend the supervised GF to semi-
supervised case.
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